翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Point of use : ウィキペディア英語版
Portable water purification

Portable water purification devices better described as point-of-use (POU) water treatment systems and field water disinfection techniques are self-contained, hand-carried units used by recreational enthusiasts, military personnel, survivalists, and others for water purification when they need to obtain drinking water from untreated sources (e.g. rivers, lakes, groundwater etc.). These personal devices and methods attempt to render water potable (i.e. safe and palatable for drinking purposes - without disease-causing pathogens).
Techniques include heat (including boiling), filtration, activated charcoal absorption, chemical disinfection (e.g. chlorine, iodine, ozone, etc.), ultraviolet purification (including SODIS), distillation (including solar distillation), and flocculation. Often these are used in combination.
Many commercial portable water purification systems or chemical additives are available for hiking, camping, and other travel in remote areas.
==Drinking water hazards==
Untreated water may contain potentially pathogenic agents including protozoa, bacteria, viruses, and some larvae of higher order parasites such as liver flukes and round worms. Chemical pollutants such as pesticides, heavy metals and synthetic organics may be present. Other components may affect taste, odour and general aesthetic qualities including turbidity from soil or clay, colour from humic acid or microscopic algae, odours from certain type of bacteria, particularly Actinomycetes which produce geosmin, and saltiness from brackish or sea water.
Common metallic contaminants such as copper and lead can be treated by increasing the pH using soda ash or lime which precipitates such metals. Carefully decanting of the clear water after settlement or the use of filtration provides acceptably low levels of metals. Water contaminated by aluminium or zinc cannot to treated in this way using a strong alkali as higher pHs re-dissolve the metal salts. Salt is difficult to remove except by reverse osmosis or distillation.
Most portable treatment processes focus on mitigating human pathogens for safety and removing particulates matter, tastes and odours. Significant pathogens commonly present in the developed world include Giardia, Cryptosporidium, Shigella, hepatitis A virus, Escherichia coli, and enterovirus.〔Geldreich E. Drinking water microbiology—new directions toward water quality enhancement. Int J Food Microbiol 1989;9:295-312.〕 In less developed countries there may be risks from Cholera and Dysentery organisms and a range of tropical enteroparasites.
''Giardia lamblia'' and ''Cryptosporidium spp.'', both of which cause diarrhea (see giardiasis and cryptosporidiosis) are common pathogens. In backcountry areas of the United States and Canada they are sometimes present in sufficient quantity that water treatment is justified for backpackers, although this has created some controversy. (See wilderness acquired diarrhea.) In Hawaii and other tropical areas, ''Leptospira spp.'' are another possible problem.
Less commonly seen in developed countries are organisms such as ''Vibrio cholerae'' which causes cholera and various strains of ''Salmonella'' which cause typhoid and para-typhoid diseases. Pathogenic viruses may also be found in water. The larvae of flukes are particularly dangerous in area frequented by sheep, deer, or cattle. If such microscopic larvae are ingested, they can form potentially life-threatening cysts in the brain or liver. This risk extends to plants grown in or near water including the commonly eaten watercress.
In general, more human activity up stream (i.e. the larger the stream/river) the greater the potential for contamination from sewage effluent, surface runoff, or industrial pollutants. Groundwater pollution may occur from human activity (e.g. on-site sanitation systems or mining) or might be naturally occurring (e.g. from arsenic in some regions of India and Bangladesh). Water collected as far upstream as possible above all known or anticipated risks of pollution poses the lowest risk of contamination and is best suited to portable treatment methods.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Portable water purification」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.